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Abstract: The 2020 COVID19 pandemic and the resulting national and international
movement restrictions provide a unique opportunity to investigate the consequences of changing
anthropogenic noise regimes on animal communities and soundscapes. Here, I used this
lockdown period as a natural experiment to investigate changes to soundscape intensity, structure,
and dynamics during restricted human activity (lockdown) in suburban Nottingham, UK. Using
11 common acoustic indices, I tested for differences in the richness and evenness of the
soundscape during the COVID19 lockdown, and I measured changes in soundscape dynamics
by comparing the temporal variability of acoustic indices during versus after the lockdown.
Regardless of how the soundscape was summarised, there were significant differences in the
intensity, evenness, and temporal variability of the soundscape during the COVID19 lockdown,
principally driven by changes to anthropogenic noise. I recorded a shift away from a dominance of
anthropophony towards more intense biological sounds during the lockdown, and the lockdown
soundscape was generally more even, particularly because of changes to the magnitude of the
diurnal cycle. These preliminary results from a mass human confinement experiment provide an
early glimpse into how suburban soundscapes are impacted by noise pollution. In time, globally
distributed longerterm monitoring efforts will reveal the generality of these findings, facilitating
a mechanistic understanding of the impacts of anthropogenic noise on the world’s natural and
humandominated soundscapes.
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Introduction

Ecoacoustics—the ecological study of sound across spatial and temporal scales (Farina,
2018)—is increasingly used as a framework to understand how animal communities and
soundscapes (sensu Pijanowski et al., 2011) are impacted by anthropogenic disturbance, including
habitat destruction (Deichmann et al., 2017; Burivalova et al., 2018, 2019b; Gasc et al., 2018),
urbanisation (Joo et al., 2011; Ross et al., 2018; MarínGómez et al., 2020), noise pollution
(Francis et al., 2009; Barton et al., 2018; Senzaki et al., 2020; Duarte et al., 2021), and climate
change (Narins and Meenderink, 2014; Krause and Farina, 2016; Sueur et al., 2019). The field
makes use of passive acoustic monitoring methods and a suite of acoustic indices to rapidly
summarise the soundscape, including biophony (biological sounds), geophony (e.g., wind, rain),
and anthropophony (humanrelated sounds; Pijanowski et al., 2011). Many acoustic indices have
been developed to date (reviewed in Sueur et al., 2014), each aiming to characterise a specific
property of the soundscape (BradferLawrence et al., 2019), and each touted as relating to a useful
aspect of biodiversity or landscape structure (Gasc et al., 2013; Fuller et al., 2015; Mammides
et al., 2017; Buxton et al., 2018; Elise et al., 2019; Ross et al., 2021a). Briefly, these indices
can be grouped into several classes. Richness or intensity indices generally represent the total
‘loudness’ of the soundscape at different frequencies, where acoustic energy in the primarily
biotic frequency range (≥2 kHz) generally indicates a greater number (but not necessarily
diversity) of animal vocalisations, while loudness in the 1–2 kHz range represents a stronger
influence of anthropophony (Kasten et al., 2012). Evenness indices measure the distribution of
acoustic energy across different frequency bins or time points within each recording (Pieretti et al.,
2011; VillanuevaRivera et al., 2011), where higher evenness may represent the saturation of the
soundscape due to the high density of vocalisations (Fuller et al., 2015; Mammides et al., 2017;
but see BradferLawrence et al., 2020). Finally, some indices (e.g., acoustic richness; Depraetere
et al., 2012) consider both the intensity and evenness simultaneously. However, despite their
utility as rapid indicators of soundscape conditions, we still lack mechanistic insight into the
world’s soundscapes, in large part due to the challenge of accurately inferring driving processes
from observational acoustic monitoring data.

One of the difficulties in attaining a mechanistic insight into human impacts on soundscapes is
that anthropogenic disturbances rarely occur in isolation. Most ecosystems are simultaneously
subject to anthropogenic threat complexes, comprising multiple interacting disturbances (Bowler
et al., 2019). Particularly intertwined are the impacts of anthropogenic noise (anthropophony) and
urbanisation per se on animal communities since human activity leaves a large sonic footprint on
ecosystems (Warren et al., 2006; Francis et al., 2009; Barber et al., 2010; Duarte et al., 2021).
The global COVID19 pandemic and its associated reductions in human movement and activity
provide an unprecedented opportunity to disentangle urban environments from their associated
anthropophony (Derryberry et al., 2020; Diffenbaugh et al., 2020; Douglas et al., 2020; Saraswat
and Saraswat, 2020). Dubbed, the Anthropause (Rutz et al., 2020), the COVID19 restrictions
(henceforth “lockdowns”) can be seen as a“global human confinement experiment” to investigate
the impacts of human activity on ecosystems (Bates et al., 2020). There is early evidence,
particularly in urban environments, that lockdowns have reduced air and water pollution (Bao
and Zhang, 2020; Le Quéré et al., 2020; but see Zangari et al., 2020), have allowed native and
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invasive species to exploit temporary changes to disturbance regimes (Manenti et al., 2020),
and behavioural plasticity in songbirds has led to higher performance songs, with birds taking
advantage of the vacant acoustic space usually dominated by anthropophony (Derryberry et al.,
2020). Whether such shifts in acoustic space use were commonplace across diverse urban and
suburban soundscapes during the COVID19 lockdown remains an open question.

Here, I used the national COVID19 lockdown in the United Kingdom as a human confinement
experiment to investigate the effects of changes in human activity and mobility on the intensity
and dynamics of a suburban soundscape in Nottingham, UK. Lockdowns reduced motor vehicle
traffic across the world (Le Quéré et al., 2020), in some cases resulting in a >50year low
for noise pollution (Derryberry et al., 2020). I anticipate that when comparing lockdown and
postlockdown suburban soundscapes, I will find a shift in the prevalence of anthropogenic noise,
as summarised by acoustic indices. I also focus here on the variability of soundscapes through
time, since temporal variability represents an important dimension of stability (e.g., Guiz et al.,
2016; Ross et al., 2021b), which, in turn, can aid in the conservation and management of natural
soundscapes and the vital ecosystem services they provide (Dumyahn and Pijanowski, 2011;
Elise et al., 2019; Levenhagen et al., 2021). Currently, little is known about how human activity
shapes soundscape variability (Rodriguez et al., 2014; Francomano et al., 2020)—particularly in
urban areas (Joo et al., 2011)—despite the importance of soundscape dynamics for answering
biogeographical questions (Lomolino et al., 2015) and in establishing baselines for developing
soundscapes as disturbance indicators (Almeira and Guecha, 2019; Burivalova et al., 2018,
2019a; Gasc et al., 2018; Francomano et al., 2020). By comparing the intensity, evenness,
and temporal variability of a suburban soundscape between two time periods including the UK
national COVID19 lockdown, I provide preliminary evidence of human impacts on soundscapes
and their dynamics.

Methods

Study Location

This study was conducted in suburban Woodthorpe, in the borough of Gedling, Nottinghamshire
County, UK. The recording site is in a suburban area, on a culdesac with limited traffic,
but is situated ~55 m from a heavily trafficked road, and ~85 m from a recreational ground
with sports fields and a children’s outdoor play area. Immediately opposite the recording site
(~10 m away) is a patch of undeveloped land overgrown with weeds, shrubs, and trees. The
biotic component of this soundscape is dominated by insects and common British garden birds
(pers. obs.), including Eurasian Blackbirds and other Thrushes (Turdus sp.), various species of
small Passerine Tits (Paridae sp.), Sparrows (Passeridae sp.), and lower frequency biotic sounds
produced by Common Wood Pigeons (Columba palumbus), and Eurasian Magpies (Pica pica).
Red Foxes (Vulpes vulpes), domestic cats, and Common Pipistrelle Bats (Pipistrellus pipistrellus,
~45 kHz) also make infrequent contributions to the nocturnal soundscape, particularly during the
late summer months. d. Anthropophony primarily constitutes traffic noise from the adjacent
road, and voices of local residents and from the nearby recreational ground.
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Acoustic Recording and Lockdown Measures

During each of the two recording periods, I installed an Audiomoth recorder (ver 1.1.0, Hill et al.,
2018) in an IPX7Waterproof case on a tree branch, ~1.4 m from ground level. The recorder gain
was set to low (27.2 dB), and the sampling rate to 48 kHz. I did not apply any filters to audio
recordings, nor did I remove potentially confounding weather noise (geophony) manually or
automatically. The recording schedule was 1 min of recording every 10 min (recording duration:
60 s, sleep duration: 540 s), and the recordings were saved in a .WAV format. This schedule
reduces battery expenditure without significantly compromising the ability to detect biological
signals in records (Pieretti et al., 2015); however, the acoustic index variance is artificially inflated
relative to continuous recording (BradferLawrence et al., 2019). Nevertheless, as I used the same
recording schedule for all recordings, pairwise comparisons are valid.

I recorded for two periods in the summer/autumn of 2020; one towards the end of the full
COVID19 lockdown in Nottingham (May 25–Jun 1; henceforth lockdown period), and one after
travel restrictions had been fully lifted, but social distancing was still in place (Sep 28–Oct 10;
postlockdown period). During the UK’s lockdown period (beginning 23 Mar 2020), people
were encouraged to work from home if possible, and only “essential” workers were permitted to
travel for work. To combat mental and physical health problems, the UK government relaxed
the restrictions to allow “unlimited amounts” of outdoor exercise, but people were still not
permitted to gather in groups, and nonessential businesses, including restaurants, pubs, and
shops, remained closed. During the lockdown, Nottingham operated a reduced schedule of
public transport. May 28 marked the final “clap for our carers” event, where people gathered
on doorsteps at 20:00 once a week to clap and cheer in support of essential workers, and this
event is present in my recordings as a broadband signal (Supporting Figure S1).

During the postlockdown period, most of the above restrictions had been lifted. Many people
were again commuting to work, and schools had returned for inperson activity. Compared with
nonpandemic years, audible human activity was likely still reduced; however, as a benchmark for
“business as usual”, the Sep 28Oct 10 period makes a suitable dataset to which comparisons with
the full lockdown restrictions can be made. The postlockdown period includes ~2 days (03 Oct
10:00–05 Oct 17:00) of missing data due to recorder failure. See Figure S2 for the spectrograms
of typical lockdown and postlockdown soundscapes.

Acoustic Indices

Using the seewave (ver 2.1.6, Sueur et al., 2008a) and soundecology (ver 1.3.3, VillanuevaRivera
and Pijanowski, 2018) packages in R (ver 4.0.2, R Core Team, 2020), I calculated 11 commonly
used acoustic indices on each 1 min audio file (n = 2343). These were acoustic complexity (ACI,
Pieretti et al., 2011); acoustic diversity (ADiv), and evenness (AEve, VillanuevaRivera et al.,
2011); the bioacoustic index (BioA, Boelman et al., 2007); the median of the amplitude envelope
(M) and acoustic richness (ARic, Depraetere et al., 2012); the acoustic entropy (H) and temporal
entropy (Ht) indices (Sueur et al., 2008b); and the normalised difference soundscape index
(NDSI), including its two component indices biophony (NDSIBio), calculated as the intensity
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of the 2–11 kHz frequency range, and anthropophony (NDSIAnthro) which measures the intensity
in the 1–2 kHz range (Kasten et al., 2012). In this way, NDSIBio and NDSIAnthro approximate the
sound levels of the biophonic and anthropophonic components of the soundscape, respectively.
For further details of acoustic index calculation, including their implementation in R, see Ross
et al. (2021a).

Statistical Analysis

To test for differences in acoustic index values between the lockdown and postlockdown periods,
I used paired Wilcoxon signed rank tests. These are nonparametric tests and so make few
assumptions regarding the data distribution, and they can handle uneven sample sizes between
paired time periods. I tested for differences between all acoustic index values for each acoustic
index during (n = 964) versus postlockdown (n = 1379) and took the 95% confidence intervals
around the difference to measure the standardised effect size. If the difference values± 95%C.I.s
did not span zero, the differences were regarded as significant (as also indicated by the Wilcoxon
test pvalue and associated Zscore). In all cases, I first scaled the acoustic indices by dividing
them by their maximum before inclusion in the models (BradferLawrence et al., 2020). For the
NDSI, which is bounded from −1 to 1, I scaled the values using (NDSI + 1)/2 (Fairbrass et al.,
2017).

As these comparisons potentially include the confounding effects of timeofday, I also tested for
lockdown versus postlockdown differences on various subsets of the data, again using paired
Wilcoxon signed rank tests to make comparisons. These subsets included a seasonally adjusted
dawn chorus (the hour including sunrise on a particular date), the hour of peak commuter travel
time (08:00–09:00), and one hour each at midday (12:00–13:00) and midnight (00:00–01:00),
aiming at capturing an average soundscape during daytime and nighttime hours, respectively.
Note that the northern latitudinal changes in day length produce seasonally adjusted dawn chorus
times that differ between lockdown periods (for example, sunrise is 03:51 on May 25, but 06:20
on Oct 09). Therefore, to separate any seasonal artifacts in comparisons of the dawn chorus, I
also tested for differences based only on the hour between 06:00 and 07:00.

To test for the effects of lockdown on soundscape dynamics, I also measured the temporal
variability of each index, for all the available data and for each of the above subsets. I used
the mean and standard deviation of the absolute model residuals of a generalised linear model
(GLM) of acoustic index values against time as my measure of temporal variability and error,
respectively (Guiz et al., 2016). In all cases, the GLMs were fitted with the “logit” link function
and beta error distribution, which can accommodate the skewed data of acoustic indices, and
can handle 0–1 standardised acoustic index values (BradferLawrence et al., 2020; Ross et al.,
2021a). I used the mean (x), standard deviation (σ ), and sample size (n) of the absolute model
residuals to produce the estimates of standardised effect sizes (SES) for the difference between
lockdown periods, using the equation x1−x2±z∗

√
σ12

n1
+ σ22

n2
, where subscripts 1 and 2 represent

the lockdown and postlockdown periods, respectively. The critical z value (z∗) was set at 1.96
to produce 95% confidence intervals around the difference between lockdown periods. Where
95% confidence intervals did not span zero, I interpreted this as a significant difference between
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the lockdown and postlockdown periods for the temporal variability of a given acoustic index.
All the analyses were conducted in R (ver 4.0.2, R Core Team, 2020) using the Stats (ver 4.0.2)
and glmmTMB (ver 1.0.2.1, Brooks et al., 2017) packages.

Results

Of the 11 acoustic indices I calculated, 6 of them were most notably different between the
lockdown and postlockdown periods overall. The normalised difference soundscape index
(NDSI), and its component indices biophony (NDSIBio) and anthropophony (NDSIAnthro) differed
between the lockdown periods (Figure 1), indicating a shift in the relative acoustic power of
the biophonydominated (2–11 kHz) versus the anthropophonydominated frequency bins (1–2
kHz). Specifically, I found that the NDSI was significantly higher during lockdown (Lockdown
= 0.6 ± 0.19 (Median ± S.D.), Postlockdown = 0.44 ± 0.22, Wilcoxon: Zscore = 11.1,
p < 0.001), as was NDSIBio (Lockdown = 0.4 ± 0.23, Postlockdown = 0.27 ± 0.27, Z = 6.72,
p < 0.001; Figure 2a). NDSIAnthro showed the opposite pattern, with lower values overall during
the lockdown (Lockdown = 0.79 ± 0.25, Postlockdown = 0.95 ± 0.19, Z = −12.6, p < 0.001;
Figure 2a). Acoustic evenness (AEve), the bioacoustic index (BioA), and acoustic richness
(ARic) also showed significant differences between the lockdown periods (Figure 3). Despite
similar median values between the two time periods (Lockdown = 0.04 ± 0.22, Postlockdown
= 0.04 ± 0.19), AEve was significantly higher during the lockdown period (Z = 2.96, p = 0.003,
Figure 2a); a pattern driven by the differences in the spread of the data (Figure S3). The related
bioacoustic index was also higher during the lockdown (Lockdown = 0.17± 0.13, Postlockdown
= 0.12 ± 0.09, Z = 12, p < 0.001; Figure 2a), while ARic was significantly lower during the
lockdown (Lockdown = 0.11 ± 0.1, Postlockdown = 0.19 ± 0.16, Z = −14.1, p < 0.001;
Figure 2a).
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Figure 1. COVID19 lockdown affects the intensity of biophony and anthropophony. Radar plots show acoustic
index values (scaled 0–1) for the normalised difference soundscape index (NDSI; a,d), biophony (NDSIBio; b,e), and
anthropophony (NDSIAnthro; c,f) during the lockdown period (May 25–Jun 01; a–c) and the postlockdown period
(Sep 29Oct 09; d–f). Individual boxes represent index values at 10 min resolution, where time is represented as a
24 h clock and dates progress outwards from the centre.

Figure 2. Standardised effect sizes for the difference between lockdown and postlockdown acoustic indices.
Values represent standardised effect sizes calculated based on the difference between postlockdown and lockdown
periods for (a) 11 acoustic index values, and (b) the temporal variability in 11 acoustic indices, across all times. Note
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that these are comparisons of postlockdown “business as usual” to the lockdown period, so effect sizes above zero
represent an increase in acoustic index values (a) or an increase in temporal variability (b) during the lockdown
period. Values which do not span zero (circles) are considered significant, while values spanning zero (triangles) do
not differ significantly between postlockdown and lockdown periods.

Figure 3. COVID19 lockdown affects soundscape evenness. Radar plots show acoustic index values (scaled
0–1) for acoustic evenness (AEve; a,d), the bioacoustic index (BioA; b,e), and acoustic richness (ARic; c,f) during
the lockdown period (May 25Jun 01; a–c) and the postlockdown period (Sep 29Oct 09; d–f). Individual boxes
represent index values at 10 min resolution, where time is represented as a 24 h clock and dates progress outwards
from the centre.

During the lockdown, the diurnal cycle of the NDSI and NDSIBio appeared visually less distinct,
while postlockdown, NDSIAnthro was close to its peak value for most of the 24 h cycle, showing
only limited evidence that human activity is primarily restricted to daylight hours (Figure 1).
For all these indices, there were significant differences between lockdown and postlockdown in
their values during the seasonally adjusted dawn chorus and the two morning periods (06:00
and 08:00). For example, NDSIBio was higher during the lockdown when considering the
dawn chorus (Lockdown = 0.56 ± 0.15, Postlockdown = 0.22 ± 0.18, Z = 4.88, p < 0.001),
while anthropophony (NDSIAnthro) was less intense during the peak commuting time in the
lockdown period (Lockdown = 0.75 ± 0.29, Postlockdown = 0.96 ± 0.21, Z = 3.43, p < 0.001;
Figure 4). However, these indices did not differ significantly between the lockdown periods when
considering a standard daytime or nighttime hour (Figure 4). The indices aimed at capturing
evenness (AEve and BioA) showed clearer effects of the diurnal cycle during the lockdown, with
a distinctive early morning (~3:00) dawn chorus during the lockdown (Figure 3a,b). Indeed, for
the seasonally adjusted dawn chorus, both AEve (Lockdown = 0.41 ± 0.24, Postlockdown =
0.09 ± 0.26, Z = 2.26, p = 0.023) and BioA were higher during the lockdown (Lockdown = 0.38
± 0.12, Postlockdown = 0.19 ± 0.09, Z = 5.19, p < 0.001; Figure 4).
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Figure 4. Standardised effect sizes for the difference between lockdown and postlockdown acoustic indices.
Values represent standardised effect sizes calculated based on the difference between postlockdown and lockdown
periods for 11 acoustic index values for five temporal subsets of the full dataset: the seasonally adjusted dawn
chorus (Dawn); 06:00–07:00 (6 a.m.); peak commuting time, 08:00–09:00 (8 a.m.); 12:00–13:00 (Midday); and
00:00–01:00 (Midnight). For details of time period subsetting, including justification, see Methods. Interpretation
follows Figure 2a.

When considering the subsets of key hours, several indices consistently showed no difference
between the lockdown periods (Figure 4). Acoustic complexity (ACI), diversity (ADiv), and
evenness (AEve) did not differ between the lockdown periods for any of the hourly subsets
excluding midnight and dawn (Figure 4), and the ACI was the only acoustic index not to differ
significantly overall (Figure 2a). The Aric and the related median of the amplitude envelope (M)
were both consistently lower during the lockdown regardless of the temporal subset considered
(Figure 3c,f and Figure 4). The acoustic entropy (H) and temporal entropy (Ht) indices showed
inverse patterns, with H increasing (Lockdown = 0.96± 0.03, Postlockdown = 0.93± 0.02, Z =
2.49, p = 0.013) and Ht decreasing (Lockdown = 0.991 ± 0.01, Postlockdown = 0.995 ± 0.01,
Z = −2.34, p = 0.019) at 08:00–09:00 during the lockdown (Figure 4).
Temporal variability differed between the lockdown and postlockdown periods for all indices but
Ht (Figure 2b). When considering the whole dataset, four indices (AEve, BioA, M, and H) were
more variable during the lockdown period, while most acoustic indices (ACI, Adiv, Aric, NDSI,
NDSIBio, and NDSIAnthro) were less variable during the lockdown. The largest relative change in
temporal variability when considering the whole time series was for NDSIBio (Lockdown = 0.76
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± 0.51 (residual Mean± S.D.), Postlockdown = 0.97± 0.58, SES range =−0.26–−0.17) which
significantly differed from zero when quantified as the standardised effect size of the difference
(Figure 2b). However, based on the hourly subsets, the variability of NDSIBio did not differ
significantly between the lockdown periods at 8:00 or midnight (Figure S4).
Most acoustic indices did not differ significantly in their variability between the lockdown periods
when considering the hourly subsets (Figure S4). BioA was not significantly different between
the lockdown periods during any of the tested subsets, while five indices (ACI, Adiv, AEve,
Ht, and NDSI) only differed during one hourly subset. Based on the standardised effect size of
the difference, M was significantly less variable during the lockdown at the 06:00 (Lockdown
= 0.13 ± 0.096, Postlockdown = 0.23 ± 0.18, SES = −0.15–−0.04) and midnight (Lockdown
= 0.055 ± 0.051, Postlockdown = 0.57 ± 0.36, SES = −0.61–−0.43) subsets. NDSIBio and
NDSIAnthro were both less variable during the lockdown for both the dawn chorus and 6:00 hourly
subsets (Figure S4). Finally, H was the only index with consistently higher temporal variability
during the lockdown regardless of the hourly subset considered (Figure S4), as also reflected by
an overall higher temporal variability for the whole time series relative to the postlockdown H
values (Lockdown = 0.62 ± 0.38, Postlockdown = 0.5 ± 0.36, SES = 0.09–0.15; Figure 2b).

Discussion

This study made use of the UK’s nationwide COVID19 lockdown to infer the impacts of human
activity on suburban soundscape dynamics. I compared the lockdown and postlockdown values
of acoustic indices and their temporal variability and found differences in the intensity, evenness,
and variability of the soundscape during the COVID19 lockdown. By viewing the COVID19
movement restrictions as a human confinement experiment (Bates et al., 2020; Rutz et al., 2020),
one can infer the impacts of anthropogenic activity on urban and suburban soundscapes. My
results provide important early evidence that humans alter not only soundscape composition—as
measured by several richness and evenness indices (Pieretti et al., 2011; VillanuevaRivera et al.,
2011; Depraetere et al., 2012)—but also the variability of soundscapes across multiple days.
Intuitively, anthropophony (NDSIAnthro) was lower and biophony (NDSIBio) higher during the
lockdown compared with postlockdown, suggesting a downward shift in the relative intensity of
anthropogenic noise pollution during the lockdown (Derryberry et al., 2020; Ulloa et al., 2021).
That biophony intensity differed between the lockdown periods suggests a plastic response of
vocalising animals to the vacant acoustic space offered by human confinement. Though these
analyses are insufficient to establish whether individual species respond through changes to
song properties (e.g., frequency: Slabbekoorn and den BoerVisser, 2006; Derryberry et al.,
2020), more intense biophony during the lockdown suggests an increase in the activity and
hence detectability of vocalising species, as reported for other cities during the lockdown (Estela
et al., 2021; Gordo et al., 2021). Such a shift in activity patterns may also explain the observed
differences in soundscape evenness in this system.
The soundscape was generally more even during the lockdown period, as quantified by acoustic
evenness (AEve, VillanuevaRivera et al., 2011) and the bioacoustic index (BioA, Boelman et al.,
2007). This was the case on average when considering AEve and BioA across all oneminute
recordings, as well as when considering early morning for BioA. While differences in evenness
can reflect changes to the overall sound intensity (Shamon et al., 2021), most of the indices I used
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to measure soundscape richness or intensity (e.g., Aric and M) were not higher, and in fact were
more often lower, during the lockdown. This means that observed differences in evenness are a
function of the homogenisation of acoustic energy across frequency bins during the lockdown—a
pattern supported by the reduced NDSIBio variability during the lockdown—implying higher
richness and/or different composition of vocalising animal communities (Boelman et al., 2007;
VillanuevaRivera et al., 2011; Estela et al., 2021). Evenness indices also revealed a clearer
differentiation between night and day during the COVID19 lockdown, with higher evenness
during daytime throughout lockdown (but see Bertucci et al., 2021), while the postlockdown
diurnal cycle was less distinct. This perhaps reflects a weakening in postlockdown daytime
soundscape evenness due to the resumption of human activity and its associated anthropophony.
Indeed, anthropophony may be the main driver of differences in both the richness and evenness of
soundscapes during the lockdown (Ulloa et al., 2021); where anthropophony decreased during the
lockdown, soundscapes were less rich and more even. Note also that the nighttime soundscape
was less even than the daytime—a pattern attributed elsewhere to nocturnal insects (Almeira and
Guecha, 2019; but see Francomano et al., 2020).
Two competing hypotheses exist regarding the relationship between biotic richness and
soundscape evenness or variability. Firstly, higher avian species richness may contribute to less
variable soundscapes due to saturation across frequency bins and through time (Fuller et al., 2015;
Mammides et al., 2017). Alternatively, sites with a high richness and abundance of vocalising
animals may be more variable, as acoustic energy is less evenly distributed among frequencies
when multiple animals compete for acoustic space (BradferLawrence et al., 2020). These
hypotheses primarily focus on evenness across frequency bins or temporal variability of a single
sound file (e.g., Ht) but also serve as suitable hypotheses when considering variability through
time as I do here. I found that most indices (with the notable exception of evenness measures and
M) were less variable during the COVID19 lockdown, suggesting that anthropogenic activity
reduces the consistency and predictability of suburban soundscapes (Mazaris et al., 2009). These
results support an earlier finding that biophony intensity is lower and variability higher in urban
areas compared with other land cover types in Michigan, USA (Joo et al., 2011; see also Mazaris
et al., 2009; Liu et al., 2013).
Acoustic temporal variability differs across ecosystems because of inherent differences in the
multiscale biotic drivers of ecological communities (Francomano et al., 2020). Uncovering the
degree to which human land use and anthropophony decouple soundscape dynamics from habitat
or landscape configuration is key to understanding the anthropogenic imprint on the dynamics
of nature (Mazaris et al., 2009; Liu et al., 2013). Studying soundscape variability in urban
and suburban areas during the Anthropause provides a unique opportunity to understand the
consequences of noise pollution on the continued supply of the ecosystem services soundscapes
provide (Elise et al., 2019; Levenhagen et al., 2021). Highly variable soundscapes may provide
less consistent mental health benefits and ultimately lead to an “extinction of experience”, as
continued urban intensification deepens the disconnect between people and nature (Gaston and
Soga, 2020), and the COVID19 pandemic may have longlasting effects on how people perceive
nature (GarridoCumbrera et al., 2021; Soga et al., 2021), including natural soundscapes. My
finding of higher variability postlockdown thus hints at a humancaused degradation of the
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consistency and stability of the essential mental health benefits and cultural values provided by
soundscapes (Dumyahn and Pijanowski, 2011; Levenhagen et al., 2021).
This study is limited in scope by its opportunistic nature. The UK’s COVID19 lockdown
provided a rare opportunity to study the effects of human confinement on urban and suburban
systems (Bates et al., 2020; Rutz et al., 2020), and establishing acoustic monitoring sites during
the pandemic allows tracking the trajectory of soundscape change as urban areas return to
“normal”. Ideally, to tease apart the confounding effects of seasonality on the soundscape,
comparisons should bemade to seasonally analogous predisturbance baselines (Derryberry et al.,
2020; Rutz et al., 2020). However, where such longterm monitoring data is unavailable, it will
be sufficient to carefully study the gradual return to the prelockdown levels of human mobility
and its impacts on soundscapes. This study is also limited both by its scope, with roughly one
week of data collection per period, and its inability to fully exclude the effects of seasonality when
comparing lockdown and postlockdown soundscapes. The timing of foraging, migration, and
reproduction can cause seasonal changes to biophony (Towsey et al., 2014; Francomano et al.,
2020), though the degree to which seasonality impacts soundscapes is sitespecific (Krause et al.,
2011; Lin et al., 2017). Seasonal change may also affect soundscape dynamics, with shifts away
from birdsong—which is typically sporadic and transient in nature (Lin et al., 2017)—reducing
temporal variability, particularly if replaced by broadband insect sounds (Farina et al., 2011).
Though seasonality may have played a role in shaping the biophony results presented in this
study, my observation of changes in anthropophony between the two periods is independent of
seasonality. My results thus offer early insight into the potential impacts of human activity on
suburban soundscapes.
Zangari et al. (2020) recently highlighted the importance of considering longterm trends in air
pollution when investigating shortterm changes during the COVID19 lockdown. The same is
true of changes to the soundscape. Certainly, soundscape dynamics should be considered within
the context of their longerterm trends (Sueur et al., 2019; Francomano et al., 2020). To achieve
such context, there must be a continued focus on the acoustic monitoring of ecosystems around
the world in an effort to establish soundscape baselines (Pieretti et al., 2017; Almeira and Guecha,
2019; Deichmann et al., 2018; Ross et al., 2018; Burivalova et al., 2019a; Sugai, 2020). Only
with such baselines can the impacts of climate change and other anthropogenic pressures on
soundscapes be effectively quantified (Krause and Farina, 2016; Sueur et al., 2019; Derryberry
et al., 2020; MarínGómez et al., 2020; Duarte et al., 2021). To do so requires a concerted effort
to strengthen global collaborative networks despite the financial implications of the COVID19
pandemic (Rutz et al., 2020; Zahawi et al., 2020). As researchers around the world begin to
piece together the effects of the Anthropause on urban soundscapes, early results such as those
presented here provide a valuable roadmap for answering questions about the human footprint on
the world’s soundscapes.
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