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Abstract

Long-duration recordings of the natural environment have many
advantages in passive monitoring of animal diversity. Techno-
logical advances now enable the collection of far more audio
than can be listened to, necessitating the development of
scalable approaches for distinguishing signal from noise. Com-
putational methods, using automated species recognisers, have
improved in accuracy but require considerable coding expertise.
The content of environmental recordings is unconstrained, and
the creation of labelled datasets required for machine learning
purposes is a time-consuming, expensive enterprise. Here, we
describe a visual approach to the analysis of environmental
recordings using long-duration false-colour (LDFC) spectro-
grams, prepared from combinations of spectral indices. The
technique was originally developed to visualize 24-hour
“soundscapes.” A soundscape is an ecoacoustics concept that
encompasses the totality of sound in an ecosystem. We describe
three case studies to demonstrate how LDFC spectrograms can
be used, not only to study soundscapes, but also to monitor
individual species within them. In the first case, LDFC spectro-
grams help to solve a “needle in the haystack” problem—to
locate vocalisations of the furtive Lewin’s Rail (Tasmanian),
Lewinia pectoralis brachipus. We extend the technique by using
a machine learning method to scan multiple days of LDFC
spectrograms. In the second case study, we demonstrate that
frog choruses are easily identified in LDFC spectrograms
because of their extended time-scale. Although calls of indi-
vidual frogs are lost in the cacophony of sound, spectral indices
can distinguish different chorus characteristics. Third, we dem-
onstrate that the method can be extended to the detection of
bat echolocation calls. By converting complex acoustic data into
readily interpretable images, our practical approach bridges the
gap between bioacoustics and ecoacoustics, encompassing
temporal scales across three orders of magnitude. Using the one
methodology, it is possible to monitor entire soundscapes and
individual species within those soundscapes.
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Introduction

Long-duration acoustic recordings of the environment are increasingly used by ecologists to monitor
species diversity in terrestrial ecosystems (Gage and Farina, 2017). Acoustic recordings have several
advantages. First, sensors can record continuously for weeks or months (depending on their power
source) whereas an observer’s ability to access and collect data in the field is limited. Second, multiple
sensors can be distributed through a landscape to record simultaneously. Third, multiple people can
listen to acoustic recordings multiple times, to facilitate interpretation. Fourth, recordings can be
stored indefinitely until more powerful analytical techniques become available. Fifth, acoustic
recorders create minimal disturbance and are unlikely to alter the vocalising behaviour of local animals.

The downside to easy acquisition of long-duration recordings is that most of it will not be listened to.
Computational methods are required to reveal features of interest, usually by writing automated
species recognisers. However, the content of environmental recordings is unconstrained, containing
much that is not of interest and confounding to even well-written recognisers. Many papers and
international competitions concerning computational bird call recognition depend on data sets that
have been extensively curated and cleaned of unwanted sounds (Priyadarshani et al., 2016, 2018) or
only include calls recorded at close range. (Note however that the LifeCLEF bird identification
challenge now includes several hours of soundscape recording [Goeau et al., 2017]). Consequently,
writing recognizers is a time consuming and expensive enterprise. And recognizers reveal nothing
about the content of a recording where the species of interest is absent.

An alternative approach is to treat long-duration recordings as soundscapes (Pijanowski et al., 2011).
Here the focus is not on individual species, but rather on the broad categories of sound sources that
contribute to the recording, typically biophony (sounds due to mammals, birds, frogs, insects, etc),
geophony (sounds due to wind, rain, surf), and anthropophony (human-made sounds, whether
speech, music or the multitude of machine sounds). To quantify this approach, acoustic indices, such
the Acoustic Complexity Index (Pieretti et al., 2010) and the Acoustic Entropy Index (Sueur et al.,
2014), are used to estimate the complexity of the biophony in a soundscape, which is, in turn, used as
an indirect measure of species diversity and ecosystem health.

There is now a considerable literature on acoustic indices (Gage and Farina, 2017, Chapter 16; Sueur
et al., 2014), but single indices do not readily reveal the detailed acoustic structure in long recordings.
As an attempt to address this problem, long-duration false-colour (hereafter LDFC) spectrograms were
developed. These are constructed by calculating three spectral indices at coarse resolution (typically 60
seconds per spectrum) and assigning the three indices to the red, green and blue channels of a coloured
spectrogram image (Towsey et al., 2014). The spectral indices employed in this article to construct
LDFC spectrograms are described in the next section.

A spectral acoustic index, as incorporated into a LDFC spectrogram, is better understood as a
mathematical “filter”—it describes some feature of the distribution of acoustic energy in each of the
frequency bins of a one-minute recording segment. The utility of the method depends upon com-
bining three indices that behave as different “filters” providing different “views” into the soundscape
(Towsey et al., 2016).

Acoustic indices have previously been used to monitor soundscapes (Gage et al., 2017; Phillips et al.,
2018b) and, in addition, to filter long-duration recordings in the search for a single species. See for
example, Gage and Farina (2017) who use spectral energy to determine the date of first appearance of
the Spring Peeper frog (potentially useful in detecting long-term climate change). Here, we extend
their application to incorporate multiple acoustic indices and LDFC spectrograms.

The purpose of LDFC spectrograms, when originally introduced, was to provide soundscape ecologists
with a tool to navigate the content of very long recordings (Towsey et al., 2015). However, a surprising
amount of detail can be obtained from false-colour spectrograms, even at a resolution of 60 seconds
per spectrum, and it has subsequently become apparent that LDFC spectrograms can also assist
ecologists in bioacoustic studies involving only one or a few species. The purpose of this article is to
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describe three case studies that highlight the utility of LDFC spectrograms in the study of individual
species from three diverse vocal taxa: birds, frogs and bats.

General methods

Recording acquisition

All recordings described in this article were obtained with Song Meter SM2+, SM3, or SM4
recorders (Wildlife Acoustics, 2017). Each recorder was attached to a tree or metal stake at a height
of ≈0.7–1.5 m. Recordings were saved in stereo, 16-bit WAVE format. Sampling rates differed for
each study.

All recordings were mixed down to mono and split into one-minute, non-overlapping segments. Each
one-minute audio segment was converted to an amplitude spectrogram using non-overlapping frames
of 512 or 1,024 samples and a fast-Fourier transform (FFT) with Hamming window. Each spectrum
was smoothed using a moving average filter (width = 3).

In this work, seven spectral indices were calculated for each one-minute segment. In our case, a spectral
index is a 256 (or 512) element vector, each element of which summarizes some aspect of the
distribution of acoustic energy in one frequency bin of the signal spectrogram. The dimension of the
vector is half the FFT window size. With the computing resources available to us (a 16-core machine),
we are able to process a 24-hour recording (sampled at 22,050 Hz) in 16 minutes. This includes
calculation of indices and preparation of spectrogram images.

We present only an abbreviated account of the calculation of the seven indices used in this work. Further
detail can be obtained in (Towsey, 2017). A three-letter code is used for ease of identifying each spectral
index. The software to perform the analysis is open source and written in C# (Towsey et al., 2018).

Calculation of spectral acoustic indices

Seven spectral indices were calculated as follows:

1. Acoustic Complexity Index (ACI): A measure of the relative change in acoustic intensity (A) in
each frequency bin, f, of the amplitude spectrogram:

∑ ∑= A A AACI[f] / i ii if – i-1,f (1)

where i is an index over all frames and f is an index over all frequency bins (Pieretti et al., 2010).

2. Temporal Entropy (ENT): A measure of the dispersal of acoustic energy through the frames of
each frequency bin (Sueur et al., 2014, 2008). The squared amplitude values in each frequency bin
are normalized to unit area and treated as a probability mass function (pmf). The entropy of the
pmf vector for frequency bin f is a measure of the energy “dispersal” through time and is calculated
as:

∑= ( ( )) NH [f]   pmf  x  log pmf  / log ( )t i if 2 if 2 (2)

where i is an index over frames and N is the number of frames. To obtain a more “intuitive” index,
we convert Ht[f] to “energy concentration”:

=ENT[f]   1 – H [f]t (3)

3. Background Noise (BGN): The decibel value of background noise in each frequency bin calculated
as the modal decibel value in each frequency bin of the decibel spectrogram. The decibel spec-
trogram was prepared by converting the amplitude values (A) to decibels using dB = 20 × log10A.
Noise reduction was achieved by subtracting the modal decibel value in a bin from each value in the
bin (Towsey, 2017).

4. Power minus Noise (PMN): The maximum decibel value in each frequency bin of the noise-
reduced decibel spectrogram (Towsey, 2017).
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5. Event Count (EVN): A measure of the number of acoustic events per minute in each frequency
bin, f, of the noise-reduced decibel spectrogram. An event is counted each time the bin’s (noise-
reduced) decibel value exceeds the 3-dB threshold (Towsey, 2017).

6. Horizontal Ridge Count (RHZ): Also derived from the noise-reduced decibel spectrogram. Many
bird songs, consist of whistles with harmonics which appear in the standard grey-scale spectrogram
as horizontal ridges. These can be detected using a 5 × 5 ridge mask. Each element of RHZ is the
average decibel value of ridge cells identified within the corresponding frequency bin (f). RHZ can
be helpful for detecting bird call activity (Towsey, 2017).

7. Spectral Peak Tracks (SPT): The spectral peaks (local maxima) are identified in each spectrum. To
qualify as a “peak,” the cell’s amplitude value must exceed 6 dB. Each element of SPT is the sum
of the “peak” decibel values identified within the corresponding frequency bin (f), divided by the
number of cells within the bin (Towsey, 2017).

Preparation of false-colour spectrograms

The choice of spectral indices to combine into an LDFC spectrogram depends upon the study.
Experience suggests that a combination of ACI, ENT and EVN assigned to the red, green and blue
channels respectively satisfies many cases. LDFC spectrograms are most informative where the three
indices are not correlated. A 24-hour LDFC spectrogram is 1,440 pixels wide (there are 1,440 minutes
in a day) and has a height equal to the number of frequency bins, or half the frame size.

Three case studies

Case study 1: Lewin’s Rail (Tasmanian) Lewinia pectoralis brachipus

Background

Lewin’s Rail, Lewinia pectoralis, is a furtive wetland-dependent bird which inhabits thick vegetation,
calls rarely and is seldom seen. Of the eight subspecies, two are of particular conservation concern.
L. p. clelandi is known only from south Western Australia but was last seen in 1932 and is
presumed extinct (Garnett et al., 2011). L. p. brachipus is restricted to Tasmania but has a patchy
distribution which extends to several offshore islands. Fewer than 70 observations of this taxon have
been made since 1995 (Department of the Environment, 2015) raising concerns that this ground-
nesting species is disproportionately affected by invasive predators (Woinarski et al., 2017). Rails are
detected primarily by their vocalizations, and most monitoring relies upon presence/absence esti-
mates using call playback and passive aural surveys (Conway and Gibbs, 2005). Repeated use of call
playback (which simulates a territorial intrusion) may negatively affect resident pairs, resulting in
territory abandonment or nest failure. Additionally, this methodology also requires a costly extended
survey effort to enable high confidence levels inferring absence. Lewin’s Rail vocalization repertoire
changes temporally from an acoustically simple contact call to a complex call repertoire with
harmonic elements that is thought to be associated with breeding. Vocalizations are also sporadic,
and of either short or long duration. To establish their current distribution and evaluate their
population status, a monitoring approach is needed that can reliably detect small numbers of
individuals unobtrusively.

This case study investigates whether the application of LDFC spectrograms can detect Lewin’s Rail at
sites where its presence had previously only been confirmed by camera traps (Znidersic, 2017). Call
detection was at first approached using an automated recognizer for the acoustically simple contact call.
However, as the vocalization repertoire shifted to an acoustically more complex call, this recognizer
proved ineffective. Here, we present the application of LDFC spectrograms as an alternative method for
year-round detection.
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Method

The study site was Tasman Island, Tasmania (43° 14′ 12.57′′ S, 148° 00′ 13.49′′ E). A Wildlife
Acoustics SM3 sensor was deployed for ten days from 10–19 November 2015 (see Znidersic, 2018, for
further details and access to recordings). The sensor was programmed for continuous recording at a
sampling rate of 24 kHz, yielding 240 hours of audio. For calculation of spectrograms and indices, the
recordings were down-sampled to 22,050 Hz. Spectrograms were prepared using a frame-width of
512. Spectrograms, so obtained, have 2,584 frames (frame duration = 23.2 ms) and 256 frequency bins
(each with a bandwidth of ≈43 Hz). Spectral indices and LDFC spectrograms were prepared as
described above.

Results

A six-hour sample from a 24-hour LDFC spectrogram is shown on the left side of Figure 1. To the
right side are eight seconds of grey-scale spectrogram (within the same time period) illustrating the
“grunt” and “wheeze” vocalizations. These vocalizations can be identified in the LDFC spectrogram as
green vertical lines in the range 100–3,500 Hz (see white rectangles). Some of the call elements,
primarily the “grunt,” occupy an available (free) acoustic space in the lower frequencies, readily
enabling identification. The three examples in Figure 1 have differing call durations (05:35, ≈40 sec
duration; 06:48, ≈8 sec; 08:08, ≈12 sec).

Not only does the LDFC spectrogram enable discrimination of Lewin’s Rail calls, it also situates them
within the broad-scale soundscape context. For example, the dawn bird chorus is shown in Figure 1 by
the green and pink hues that commence at 05:00 in the 1,500–5,000 Hz frequency range and
additionally, it illustrates a visual representation of the available acoustic space.

Method to build automated recogniser using spectral indices features

The visibility of Lewin’s Rail calls in these LDFC spectrograms suggests that the spectral indices
themselves could be used as features to train an automated recogniser. This would be useful to speed
the search for calls where there are many days of LDFC spectrograms to be examined.

To explore the feasibility of this approach, we used the PMN, ENT, SPT, RHZ, and ACI spectral
indices derived from an entire day of recording. We used only 20 frequency bins (5–25 or 215 Hz to
1,075 Hz) from each spectral index. This yielded a data set of 1,440 instances, consisting of 49
positive and 1,391 negative instances. Each instance consisted of a 5 × 20 = 100 element feature vector
and a binary label (0 = not an Lewin’s Rail call, 1 = Lewin’s Rail call). The feature values were
converted to z-scores for each feature independently. The data were used to train a Support Vector

Figure 1. (a) A six-hour sample (04:00 to 10:00) from a 24-hour LDFC spectrogram. (b) An eight-second

portion of standard grey-scale spectrogram extracted from the same time period.

The vertical axis (0–10 kHz) is the same for both spectrograms. The grey-scale spectrogram illustrates the “grunt” and
“wheeze” of the Lewin's Rail. These can be identified in the LDFC spectrogram within the white rectangles. The dawn
chorus is visible at 05:00.
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Machine (SVM) in the WEKA Machine Learning package (Frank et al., 2016). Performance was
assessed using five-fold cross-validation.

Results of recognizer using spectral index features

A confusion matrix is shown in Table 1. Precision and recall were 80% and 67% respectively.

A better interpretation of this result should take into account that the 49 positive instances consisted of
18 easy instances (having an average signal-to-noise ratio [SNR] of 11.6 dB and easy to recognise by
eye in a standard grey-scale spectrogram); 12 difficult instances (having an average SNR of 4.0 dB and
more difficult to recognise by eye); and 19 very difficult instances (having an average SNR of 3.2 dB
and very difficult to recognise, even for the human eye, because the wheeze part of the call was
sometimes missing). 100% of the easy and difficult instances were correctly recognised by the SVM
recogniser and three (16%) of the very difficult instances.

Case study 2: Frog communities of the Gulf of Carpentaria

Background

Frog calls are considered an easier target than bird calls for automated recognisers because their
structure is simpler, and many species can be distinguished on just three major features, dominant
frequency, pulse rate and pulse duration (Savage, 2002). Nevertheless, automated frog call recognition
presents difficulties because frog chorusing behaviour involves multiple individuals of the same and
different species calling simultaneously, thus obscuring the individual calls on which a recogniser is
typically trained, comparable to the cocktail-party effect in speech recognition.

Frog choruses can be hours in duration and consequently soundscape analysis techniques become
viable. Furthermore, three of the spectral indices that have proven to be useful for constructing LDFC
spectrograms (ACI, ENT, and EVN) respond differentially to important distinguishing features of frog
calls. ACI is sensitive to complexly structured calls having multiple levels of amplitude modulation.
ENT responds to pulses or croaks having high amplitude, and EVN responds to high pulse rates.

This case study concerns frog communities on Groote Eylandt in the Gulf of Carpentaria, northern
Australia. The island has so far remained free of the cane-toad Rhinella marinus invasion that is
sweeping across northern Australia. The purpose of this study was to build a thorough understanding
of frog communities on the island prior to a possible invasion. We originally approached this task by
writing traditional call recognisers, but, despite some success (e.g., Xie et al., 2016), this approach
provides little insight into the north Australian soundscape and the place of frog chorusing within it.
Hence, we investigated the use of LDFC spectrograms.

Methods

The study site was Groote Eylandt (13° 58′ 24.48′′ S, 136° 27′ 34.25′′ E). A Wildlife Acoustics SM2
sensor was deployed for recording 12 hours at night (19:00–07:00) over consecutive days. The
sampling rate was 22,050 Hz. Spectrograms were prepared using a frame-width of 512. Spectral
indices and LDFC spectrograms were prepared as described above.

Table 1. Confusion matrix for performance of the Lewin’s Rail call recogniser.

Not-Lewin’s Rail Lewin’s Rail Classification

1,383 8 Class: Not Lewin’s Rail

16 33 Class: Lewin’s Rail
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Results

Figure 2 shows four LDFC spectrograms, each of three hours duration, alongside five seconds of standard
grey-scale spectrogram taken from the same time-period. The dominant feature in all LDFC spectro-
grams is an insect chorus at 5,000 Hz, picked up strongly by the ACI index, and hence displayed in a red
hue. In the language of soundscape ecology, such dominant features are referred to as sound-marks
(Schafer, 1994). Sound-marks are extremely useful in orienting oneself in a visual representation of a
soundscape, analogous to landmarks in a landscape.

The LDFC spectrogram in Figure 2a reveals intermittent chorusing of the ornate burrowing frog
Platyplectrum ornatum over a two-hour period in the 500–2,500 Hz band. The starts and ends of
chorus episodes are clearly delineated in solid colour, although a single call has a two second interval
between each brief pulse (see standard grey scale spectrogram). Colour changes reflect the chorus
intensity.

The chorusing of the Northern dwarf tree frog Litoria bicolor (Figure 2b) occupies two frequency
bands which straddle the insect chorus at 5,000 Hz. The synchronisation of green banding above and
below the insect track helps to identify this species. Once again, changes in colour reflect chorus
intensity. The call of the flood plain toadlet Uperoleia inundata (Figure 2c) also has a pulse period of
two seconds but in the 1,200–2,200 Hz band which helps to distinguish it from P. ornatum.

Figure 2. Four LDFC spectrograms, each of three hours duration, alongside five-seconds of standard

spectrogram taken from the same time-period.

White rectangles identify frog choruses and calls of interest. The vertical Hertz scale is the same for all spectrograms.
(a) Intermittent chorusing of the ornate burrowing frog. On the right are three brief pulses of the same species.
(b) Chorusing of the Northern dwarf tree frog. The red band at 5 kHz is an insect chorus. The standard spectrogram
illustrates how a single call pulse almost straddles the narrow-band insect chorus. (c) Chorusing of the flood plain toadlet
(left) and three pulses from one individual (right). (d) This evening soundscape (left) contains a strong insect chorus and
chorusing of three frog species.

Towsey et al. | Visual detection of vocal species in large audio data-sets https://www.veruscript.com/a/IUSWUI/

J. Ecoacoust. | 2018 | 2: #IUSWUI | https://doi.org/10.22261/JEA.IUSWUI 7

https://www.veruscript.com/a/IUSWUI/
https://doi.org/10.22261/JEA.IUSWUI


The soundscape in Figure 2d spans 1.5 hours either side of dusk. A strong insect chorus persists
throughout, although there is a slight drop in frequency coinciding with the onset of colder night-time
temperatures. Dusk is preceded by bird calls (green/orange hues) and followed by chorusing of three
frog species. Despite spectral and temporal overlap of calls, colour differentiation helps to distinguish
the three species more easily in the LDFC spectrogram than in the standard grey-scale spectrogram.
Spectral overlap of two choruses leads to a change in colour rendering, thereby helping to identify the
bounds of each chorus.

Case study 3: The Gympie bat community

Background

Bats represent approximately 20% of all mammalian biodiversity and the vast majority of bat species
globally use ultrasonic echolocation (Hutson et al., 2001). Echolocating bats are typically surveyed by
recording their echolocating pulses. Recordings are analysed using a variety of systems, the most
common being manual analysis, where field recordings are visually compared to known reference calls
and/or published metrics (Kunz and Parsons, 2009). This type of analysis can reveal the species
present, and an activity index. As with other acoustic analysis methods, manual analysis can be
extremely time-consuming, limiting the ability to analyse long-duration acoustic recordings.

Given the high sampling rates required for bat recordings, it might be supposed that the LDFC
spectrogram technique would be inappropriate for bat monitoring. Despite the increasing capability of
recording technology, current storage limitations prevent recording for long duration at the high
sampling rates required for ultrasonic vocalisations. However, in an acoustic study of Gympie National
Park (Phillips et al., 2017), LDFC spectrograms detected calls of the White-striped free-tailed bat,
Austronomous australis. This species is unusual because its calls are within human hearing range and
just below the Nyquist frequency of that study (11,025 Hz). The White-striped free-tailed bat was
detected in one month of spectrograms over 13 months of recording (Figure 3). This chance discovery
motivated a “proof of concept” investigation into how the LDFC spectrogram technique could be
extended to a study of higher frequency bat calls.

Figure 3. Twenty-one days of continuous recording in Gympie National Park represented by 21 con-

catenated LDFC spectrogram ribbons.

Dawn and dusk are about 06:00 and 19:00 respectively. The lower portion (around 10 kHz) of echolocating calls of the
White-striped free-tailed bat can be seen between 20:00 and 24:00 in many of the spectrogram ribbons (rendered in
orange). Note that the temporal resolution is 60 seconds per frame or pixel.
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Method

The study site was Gympie National Park (26° 4′27.51′′S, 152°43′2.45′′). Over six consecutive
nights, in August 2017, we recorded twelve hours (18:00–06:00) of continuous recording, using an
SM4 at a sampling rate of 96 kHz. This is the maximum available on an SM4 and allowed detection of
bat calls up to the Nyquist of 48 kHz (see Phillips, 2018a, for further details and access to the
recordings). Spectrograms were prepared using a frame-width of 1,024. Spectrograms, so obtained,
have 5,625 frames (frame duration = 10.66 ms) and 512 frequency bins (each with a bandwidth of
~93.8 Hz). Spectral indices and LDFC spectrograms were prepared as for case studies 1 and 2, except
for one significant difference—the acoustic indices were calculated at 15 second resolution rather than
60 second, to better accommodate the brevity of echolocating pulses. It results in spectrograms that are
4× wider (showing correspondingly more detail) and with slightly changed colour rendering.

Standard grey-scale spectrograms at high temporal resolution were manually viewed to identify bat
passes having a minimum of four call pulses. A pass is defined as a series of consecutive pulses
(minimum of four characteristic pulses), indicating the bat has “passed” the detector once. Each pass
was assigned to a species, given an indication of strength (weak, moderate, strong; based on the dB
relative to ambient noise), the number of pulses recorded, and whether it was observable in the LDFC
spectrogram. The presence of the pass in the LDFC spectrogram was compared against the strength
and the number of pulses.

Results

Over the six nights, 35 strong, 91 moderate, and 184 weak passes were recorded from eight species or
species complexes. Of these 310 passes, approximately 54% were observable in the LDFC spectro-
grams. All of the species present in the dataset were observable in the LDFC spectrogram; including the
White-striped free-tailed bat Austronomous australis, Chocolate wattled bat Chalinolobus morio, Gould’s
wattled bat C. gouldii, Eastern horseshoe bat Rhinolophus megaphyllus, Yellow-bellied sheath-tailed bat
Saccolaimus flaviventris, and three species complexes (broad-nosed bats Scotorepens sp./S. greyii/S. orion;
forest bats Vespadelus darlingtoni/V. vulturnus; and the Inland broad-nosed bat S. balstoni/ greater
broad-nosed bat Scoteanax rueppellii). The number of pulses in a pass varied from four to 613. Figure 4
shows a portion of one LDFC spectrogram from 18:00-10:15. A preliminary scan of this image reveals
the presence of at least four bat species. Figure 5 shows an excerpt from the LDFC spectrogram and the
corresponding bat passes in a standard grey-scale spectrogram.

Both the length and strength of a pass influenced whether it was observable in the LDFC spectrogram.
Typically, passes of moderate strength required at least 20 pulses to be observable; whilst strong passes
were observed from as little as eight pulses. Whether a pass is identifiable to species in a LDFC
spectrogram depends on the frequency of the echolocation, as there are certain frequencies where
multiple species overlap. Even traditional manual analysis methods struggle to tease apart certain
species from each other.

Discussion

From an ecological monitoring perspective, LDFC spectrograms are a novel visualisation tool to assist
detection of vocal species. With one set of “generic” acoustic features or indices, one can construct an
LDFC soundscape spectrogram, with the additional possibility of detecting species of interest within
that soundscape. Detection of an individual species (even at the coarse resolution of one spectral index
per minute) is possible where its call has clearly defined acoustic properties. Importantly, these dis-
tinctive properties refer not just to a frequency band, but to a combination of features that yield an
identifiable pattern of colour in a false-colour rendering.

Where the calling behaviour is extended through time, as in the case of frog chorusing, the resultant
traces in an LDFC spectrogram are particularly easy to detect. However, it should be noted that there
is no simple correlation between a species and the false-colour rendering of its vocalisations. Variations
in the intensity and structure of a species’ call/chorus behaviour lead to variations in colour renderings.
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Figure 5. LDFC spectrogram of 2.5 hours of having the same temporal and spectral scale as Figure 4.

The inserts are standard grey-scale spectrograms (interval between minor ticks = 0.1 seconds) illustrating the individual
echolocating pulses that contributed to call detection in the LDFC spectrogram.

Figure 4. LDFC spectrogram, 4.25 hours. Unlike the previous spectrograms, this one has a temporal

resolution of 15-seconds per pixel.

The vertical axis ranges from 0–40 kHz (grid-lines spaced at 5 kHz). The arrows mark four different species of echo-
locating bats that are clearly visible at this temporal and spectral resolution.
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However, the extent of this variation can be learned with experience. The advantage of rendering three
acoustic indices in colour, as opposed to a single index, such as amplitude in grey scale (Gage and
Farina, 2017), is that three indices offers more possibilities to detect subtle changes in acoustic
behaviour or to detect temporal and spectral overlap of different call types.

The LDFC technique is further enhanced by the ability to prepare spectrograms at different reso-
lutions (Towsey et al., 2015) and by the possibility of constructing call recognisers with data sets
derived from the same spectral indices used to construct the soundscape LDFC spectrograms. We
believe this article to be the first published example using a (SVM) call recogniser to find bird calls
within a LDFC spectrogram. The preparation of an automated recogniser is useful where an ecologist
must scan many days of data (one LDFC spectrogram per 12–24 hours) to determine the presence/
absence of a species.

We have found that the seven spectral indices described in this study have broad applicability to many
soundscape investigations, whether terrestrial, marine, or freshwater. The analysis of the recordings
and the production of the false-colour spectrograms is entirely automated. We routinely produce two
false-colour spectrograms, the first assigning ACI-ENT-EVN and the second assigning BGN-PMN-
RHZ to the RGB channels respectively. After a short period of learning, one quickly recognises the
sound-marks in a soundscape and whether calls of the species of interest can be recognised. Of course,
further experimentation is required to prepare an automated recogniser. For detecting Lewin’s Rail
calls using an SVM, we found that a combination of five spectral indices gave the optimum result:
ACI, ENT, EVN, PMN, and RHZ. The amount of time required to build this recogniser using
generic acoustic indices (six hours to construct the data set, two hours to train and test an SVM
recogniser) was small compared to the days of work required to code and incrementally improve the
performance of a “traditional” recogniser using features derived from standard spectrograms of the
Lewin’s Rail “contact” call.

In addition, just to determine recall and precision rates for the “contact call” recognizer required an
additional 14 hours of manual work (unpublished data, Znidersic and Towsey). By comparison, using
the LDFC images, near immediate visual detection and validation was achieved for the “good” calls,
without need for the SVM recogniser. Using the SVM recognizer accelerated visual detection of the
difficult and very difficult calls.

Despite the above advantages, the LDFC spectrogram technique is ineffective where the species of
interest only calls during the morning chorus or contemporaneously with many other species. In
addition, in the case of bat calls, the method does not appear to detect very low amplitude calls
compared to a well-developed custom recogniser and would therefore be inappropriate for determining
presence/absence of species of “whispering” bats. However, the inability of the technique to detect
Lewin’s Rail and bat calls to the same level of accuracy as scanning standard grey-scale spectrograms
with the human eye, deserves further comment.

Real world datasets derived from environmental recordings, present three difficulties, particularly when
used for machine learning purposes. First, the number of negative instances greatly outnumbers the
positives (1391:49 in case of the Lewin’s Rail dataset). Second, in addition to geographic variation, the
calls of most species vary within and between individuals. Third, poor quality calls will almost always
outnumber good quality calls. This last difficulty, which has obvious consequences for training a
recogniser, is a consequence of two physical laws: where a vocal species is approximately uniformly
distributed through the landscape, 1. the number of vocal individuals at distance r from the micro-
phone will increase in proportion to r, but 2. the amplitude of calls arriving at the microphone will
decrease with r2. These two factors conspire to ensure that a majority of positive instances in a truly
representative data set will be of low quality. This is a common problem for real-world datasets, as
opposed to curated datasets, because every call detected by the human ear is included (Digby et al.,
2013). Both the Lewin’s Rail and Gympie bat datasets contained a majority of poor quality calls, and
standard recognisers or analysis techniques would also have difficulty with these.
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Conclusion

The three case studies presented in this article describe the conversion of complex long-duration
acoustic data into readily interpreted false-colour spectrogram images. Using the one methodology, it
is possible to monitor entire soundscapes and some of the individual species that help create that
soundscape. In addition, the ability to visualise sound scapes at multiple temporal scales is a distinct
advantage and helps pose ecological questions that might not otherwise be obvious. An interesting
feature of this approach is that it begins to bridge the gap between bioacoustics and ecoacoustics, two
disciplines whose traditional temporal scales of interest have been separated by some three orders of
magnitude.
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