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Abstract

Passive acoustic monitoring is a potentially valuable tool in
biodiversity hotspots, where surveying can occur at large scales
across land conversion types. However, in order to extract
meaningful biological information from resulting enormous
acoustic datasets, rapid analytical techniques are required. Here
we tested the ability of a suite of acoustic indices to predict
avian bioacoustic activity in recordings collected from the
Western Ghats, a biodiversity hotspot in southwestern India.
Recordings were collected at 28 sites in a range of land-use
types, from tea, coffee, and cardamom plantations to remnant
forest stands. Using 36 acoustic indices we developed random
forest models to predict the richness, diversity, and total number
of avian vocalizations observed in recordings. We found limited
evidence that acoustic indices predict the richness and total
number of avian species vocalizations in recordings (R2 < 0.51).
However, acoustic indices predicted the diversity of avian spe-
cies vocalizations with high accuracy (R2 = 0.64, mean squared
error = 0.17). Index models predicted low and high diversity
best, with the highest residuals for medium diversity values and
when continuous biological sounds were present (e.g., insect
sounds >8 sec). The acoustic complexity index and roughness
index were the most important for predicting avian vocal
diversity. Avian species richness was generally higher among
shade-grown crops than in the open tea plantation. Our results
suggest that models incorporating acoustic indices can accu-
rately predict low and high avian species diversity from acoustic
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recordings. Thus, ecoacoustics could be an important contributor to biodiversity monitoring across
landscapes like the Western Ghats, which are a complex mosaic of different land-use types and face
continued changes in the future.

Introduction

Rapid methods to assess biodiversity and ecosystem health at large spatial and temporal scales are
paramount for informing conservation planning (Stem et al., 2005). Because sound-producing species
are important indicators of environmental health, acoustic surveys offer an important approach for
biodiversity monitoring programs (Gregory and Strien, 2010; Blumstein et al., 2011). Advances in
digital recording technology allow standardized acoustic surveying of increasingly large landscapes over
longer, coordinated time-periods (Merchant et al., 2015). Passive acoustic monitoring would thus be
particularly useful in biodiversity hotspots, where understanding the impact of widespread land
conversion on numerous species requires rapid surveying at a large scale.

In order to extract meaningful biological information from the enormous datasets that result from
large-scale acoustic monitoring, a number of acoustic indices have been developed (Buxton et al., in
review). Acoustic indices examine the heterogeneity of the acoustic environment, under the assumption
that more species found in a community will produce a greater number of different signals at the same
time (Sueur et al., 2008b). By summarizing acoustic energy, this approach foregoes species identi-
fication and focuses instead on community level diversity (Towsey et al., 2014). Many types of acoustic
indices have been tested and have been found to reflect vocal species diversity and abundance, com-
munity composition, vegetation structure, habitat type, human perception of a soundscape, human
activity, and ecological condition in terrestrial and aquatic habitats (Sueur et al., 2014). However, the
development and standardization of appropriate acoustic indices have occurred predominantly in
temperate regions (Buxton et al., in review).

The mountain chains of the Western Ghats in southern India are a biodiversity hotspot –with high
endemism and extreme rates of habitat loss (Myers et al., 2000). Between 1920 and 1990, the Western
Ghats experienced a 40% decline in forest cover due to land conversion for plantations of timber, tea,
coffee, and other agriculture (Chandran, 1997; Menon and Bawa, 1997). The Western Ghats are by
far the most densely populated and widely altered of global biodiversity hotspots (Cincotta et al.,
2000). Human-modified landscapes in the Western Ghats typically retain a matrix of native forest
cover and feature high habitat heterogeneity (Anand et al., 2010). Land-use ranges from coffee grown
under the shade of native forest trees to open monocultures of tea (Raman, 2006). This juxtaposition
of natural areas and different land-use types warrants a biodiversity monitoring approach which
accounts for both local and landscape-scale characteristics.

The Western Ghats have an especially high diversity of amphibians, birds, crickets, and cicadas
(Mittermeier et al., 2011), many of which produce sounds for territory defense, mate attraction,
predator deterrence, navigation, foraging, and maintaining social groups (Brumm, 2013). This high
diversity of sound-producing species suggests that acoustic monitoring could be a particularly valuable
method. However, properties of the acoustic environment could render the use of acoustic indices for
analysis of recordings challenging. For example, there are high densities of insects which produce
extended, constant, and broadband vocalizations (Diwakar and Balakrishnan, 2007; Price et al., 2016).
This may confound a high diversity of bird song, which is characterized by an intrinsic variability of
intensities (Pieretti et al., 2011). Moreover, heterogeneity of the acoustic environment may be
expected to increase with avian vocal diversity and reach a threshold due to the redundancies in
acoustic characteristics of species (Sueur et al., 2008b). Thus, in a crowded and complex acoustic
space, the relationship between acoustic indices and vocal species diversity is unclear.

With a high diversity of species embedded in a complex mosaic of land-use types, the Western Ghats
would benefit from a standardized monitoring approach capable of measuring biodiversity at particular
places and times, but which is also predictive and scalable across the landscape. Passive acoustic
monitoring would be an ideal technique to capture acoustic diversity at large spatio-temporal scales.
However, to extract meaningful biological information from large acoustic datasets, an automated
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approach is required. Here we tested the ability of acoustic indices to predict the richness, diversity,
and total number of avian vocalizations in recordings from 28 sites in the tropical wet evergreen region
of the Western Ghats. Additionally, using a combination of model predictions and observations from
recordings, we compare acoustic diversity and the richness of avian vocalizations between a number of
different land-use types, including tea, coffee, and cardamom.

Methods

Recording sites

We obtained acoustic recordings from four sites within Kadumane tea estate in Hassan district and 24
sites at plantations in Kodagu district of Karnataka state in the Western Ghats (Figure 1). The altitude
ranged from 900–1,100 m, where rainforest at this elevation is classified as tropical wet evergreen
(Champion and Seth, 1968). Kadumane tea estate occupies over 1,000 acres, with extensive areas

Figure 1. Locations of acoustic recorders in the Western Ghats, India.

Four sites were located in the Kadumane tea plantation and 24 sites were located in Mojo plantation. Dark green squares
indicate the use of Wildlife Acoustic Song Meter model SM2, light green squares indicate the use of SM1, and light grey
shaded areas indicate open tea plantations closest to the recorder. World imagery captured by ArcGIS MapServer.
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cleared for tea (Camellia sinensis; Figure 2) and small interspersed fragments of remnant forest. The
plantations in Kodagu district have a variety of shade-grown crops, including coffee (Coffea spp.) and
cardamom (Elettaria cardamomum), interspersed with black pepper (Piper nigrum) vines (Figure 2).

Acoustic recordings

At Kadumane tea estate, recordings were collected for 3–12 days in May 2017 using Song Meters
(model SM2; Wildlife Acoustics Inc., Concord, MA; Supplementary material, Appendix 1). Audio
data were collected in mono, 16 bit WAV format at a sampling rate of 22,050 Hz with a gain of
48 dB. Song Meters were programmed to record in 5 minutes increments for 2 hours after sunrise and
for the first 5 minutes each 30 minutes thereafter. Two Song Meters were placed at the edge of tea
fields, two were placed >300 m inside forest fragments, and all recording sites were >300 m to ensure
independence of acoustic environments.

At plantations in Kodagu, recordings were collected for 2–4 days from April 2010–January 2011 using
Song Meters model SM1 (Supplementary material, Appendix 1). Audio data were collected in stereo,
16 bit WAV format at a sampling rate of 22,050 Hz with a gain of 42 dB for 2 minutes each hour
from 0600–0800 IST. Half of the recordings were collected in coffee and half were collected in
cardamom plantations. Similar to Kadumane, all recording sites were spaced >250 m apart.

Analysis of recordings

In order to calibrate data acquired from different recording devices we converted all audio data to
1-second 1/3 octave band SPLs measurements from 12.5–8,000 Hz using an end-to-end calibration
method (Merchant et al., 2015). We then calculated a total of 36 acoustic indices and acoustic
descriptors (Table 1) for each 5 minutes (Kadumane) and 2 minutes (Kodagu) sound file. We used
indices calculated at a 1-second 1/3 octave band resolution because we found indices calculated at a
finer resolution (0.02 sec, 43 Hz) to be of limited utility (Supplementary material, Appendix 2).
Because the lowest frequency of a bird vocalization was found at 230 Hz (Greater coucal, Centropus
sinensis), we calculated indices intended to capture biological activity using frequency bands from
250–8,000 Hz and those intended to capture background noise (i.e., anthropogenic and weather
sounds) using bands from 31.5–200 Hz (Brumm and Slabbekoorn, 2005).

To assess the diversity and richness of bird species vocalizations for comparison with acoustic indices, a
trained technician (for Kadumane) and a bird song expert (SA, for Kodagu) identified bird vocal-
izations in a subset of recordings. The observers used software Raven Pro 1.5 (Cornell University,
Ithaca, NY) to visualize spectrograms, listen to audio files, and tag vocalizations. Before analyzing the
final dataset, to ensure the technician was able to correctly identify most (>70%) bird sounds, they
were asked to identify 65 randomly chosen bird species songs from the Karnataka region of the
Western Ghats (bird song accessed from xeno-canto—http://www.xeno-canto.org). Although we were
interested in classifying insect vocalizations, they have little frequency modulation; thus, identifying
species would require more time-consuming observation of oscillograms or power spectra (Metrani
and Balakrishnan, 2005). Instead, we identified all insect sounds as “insect.” Other non-avian sounds
were classified as “anthropogenic,” “rain,” “frog,” “squirrel,” or “langur.” Sounds that observers were
unable to identify to species (<2%) were labeled as “unknown.”

In recordings from Kodagu, the number of unique avian species vocalizations was noted for each
2-minute clips (i.e., vocal species richness). In recordings from Kadumane, the technician measured the
duration, counted, and classified each vocalization (i.e., vocal species richness and number of each
vocalization) in three randomly selected 5-minute clips from each day at each site (58 clips total). Because
we were unable to isolate individual animals, the total number of individual sounds from each species was
counted. When it was difficult to distinguish individual sounds, the total duration of a series of vocal-
izations was calculated and divided by the average duration of a single sound.

Because we collected longer recording samples at Kadumane, to standardize vocal species richness
among Kadumane and Kodagu we divided the total number of unique avian species heard by the
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Figure 2. Examples of differences in vegetation structure and composition across different land-use types

where recordings were collected in the Western Ghats: a) tea, b) coffee, c) cardamom.

Typically tea plantations have the least canopy cover. Photographs were made by Rachel Buxton and Samira Agnihotri.
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Table 1. Full set of acoustic indices calculated on calibrated 1-second 1/3 octave band acoustic data from

the Western Ghats, India. The full spectrum of frequency bands spanned from 31.5–8,000 Hz, biological

bands spanned from 250–8,000 Hz, and noise bands from 31.5–200 Hz. For full explanation of each

index see references and (Buxton et al., in review).

Index abbreviation Index name Frequency band References

L10–L90 Difference between 10th and
90th exceedence levels

Full spectrum (Hong and Jeon, 2017)

Mamp Median sound level Full spectrum (Depraetere et al., 2013)

dBA_noise A-weighted mean sound level Noise (Torija et al., 2013)

dBA_bird Biological (Torija et al., 2013)

dB_noise Mean sound level Noise (Torija et al., 2013)

dB_bird Biological (Torija et al., 2013)

Biophony Biophony Biological (Joo et al., 2011)

Anthrophony Anthrophony Noise (Joo et al., 2011)

avgAMP Average signal amplitude Full spectrum (Desjonquères et al., 2015)

L10AMP SPL exceeded 10% of the time Full spectrum (Torija et al., 2013)

Peakfreq Peak frequency Biological (Sueur et al., 2008a)

AA_noise Acoustic activity Noise (Towsey et al., 2014)

AA Biological (Towsey et al., 2014)

AAc_noise Count of acoustic events Noise (Towsey et al., 2014)

Aac Biological (Towsey et al., 2014)

AAdur_noise Duration of acoustic events Noise (Towsey et al., 2014)

AAdur Biological (Towsey et al., 2014)

Kurtosis Spectral kurtosis Biological (Bormpoudakis et al., 2013)

Skew Spectral skewness Biological (Bormpoudakis et al., 2013)

Hf Spectral entropy Biological (Sueur et al., 2008b)

Ht Temporal entropy Biological (Sueur et al., 2008b)

H Total entropy Biological (Sueur et al., 2008b)

Hm Entropy of spectral maxima Biological (Towsey et al., 2014)

HvPres Entropy of spectral variance Biological (Towsey et al., 2014)

HvSPL Entropy of spectral variance Biological (Towsey et al., 2014)

Roughness Roughness Biological (Rychtáriková and Vermeir,
2013)
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length of the recording sample (in min). For recordings from Kadumane, we calculated the Shannon
index of diversity of avian vocalizations (Equations 1, vegan package; (Oksanen et al., 2013), the total
number of avian vocalizations, and the total number of the most common avian species vocalizations
for each 5 minutes recording sample. The Shannon index was calculated as:

∑= −
=

H p plog
i

i iSh
1

S
(1)

where S was the number of avian species observed in the recording sample and pi was proportion of
unique vocalizations belonging to the ith species (Gotelli and Chao, 2013).

Quantitative analysis

All statistical analyses were performed in R version 3.4.1 (R Core Team, 2017). To predict the richness,
diversity, and the total number of avian vocalizations in recordings from acoustic indices, we used a
random forest (RF) machine learning procedure (Breiman, 2001; randomForest package; Liaw and
Wiener, 2002). First we removed multivariate redundant acoustic indices using QR decomposition
(threshold = 0.05; (Golub and Van Loan, 1996).We tested global RFmodels with all remaining acoustic
indices as predictor variables. Using the 58 sub-setted clips from Kadumane and data from Kodagu
combined we tested a global RF model with the richness of avian species vocalizations as the response
variable. Using the 58 clips from Kadumane only we tested global RF models with one of three response
variables: Shannon diversity of avian vocalizations, total number of avian vocalizations, and total number
of the most common species vocalizations (Indian scimitar babbler, Pomatorhinus horsfieldii, see results).
We selected the model with the lowest mean squared error (MSE) and highest R2 and used a model
selection procedure to fit a final model with the fewest number of variables (rfUtilities package; (Evans
and Murphy, 2017). We used this final model to predict the diversity of avian vocalizations in all
recordings. To examine the importance of each acoustic index we used the mean percent increase in
MSE, which is the loss of predictive accuracy due to the permutation of each variable. The more

Index abbreviation Index name Frequency band References

ACI Acoustic complexity Biological (Pieretti et al., 2011)

ADI Acoustic diversity Biological (Pekin et al., 2012)

Evenness Acoustic evenness Biological (Villanueva-Rivera et al.,
2011)

AR Acoustic richness Biological (Depraetere et al., 2013)

NDSI Normalized difference soundscape
index

Full spectrum (Kasten et al., 2012)

Bio_anth Ratio of biophony to anthrophony Full spectrum (Kasten et al., 2012)

SpecPers Spectral persistence Biological (Towsey et al., 2014)

CLdurDiff Difference between cluster duration Biological (Towsey et al., 2014)

CLpkDiff Difference between cluster peak
frequency

Biological (Towsey et al., 2014)

CLLeqDiff Difference between cluster Leq Biological (Towsey et al., 2014)

NumCL Spectral diversity Biological (Towsey et al., 2014)
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important a parameter, the larger the percent increase in MSE (i.e., the larger the effect on the model;
(Breiman, 2001).

Continuous sounds are thought to confound the ability of acoustic indices to detect variation in
bioacoustic signals (Pieretti and Farina, 2013; Parks et al., 2014). Thus, we tested whether continuous
sounds affected the predictive ability of top acoustic index RF model by examining the relationship
between model residuals and the duration and count of different sound types. We used a linear mixed
model with absolute values of model residuals as a response variable and the following sound types as
predictor variables: the duration (in sec) of anthropogenic (e.g., voices, motorcycles, vehicles) and
constant biological sound (sounds >8 sec; e.g., insects, some birds); the presence or absence of rain; and
the number insect and frog sounds. We used these sound types as covariates as they are relatively
continuous over time and use a wide range of frequencies.

Results

For recordings collected at Kadumane, 290 minutes (5% of total) were manually analyzed to count
and categorize all sounds. For recordings from Kodagu, 328 minutes (95% of total) were manually
analyzed to count the total number of avian species vocalizations. We found 39 avian species in
recordings from Kadumane and 67 in recordings from Kodagu. At both locations, we observed the
Large-billed crow (Corvus macrorhynchos) in the largest percentage of recording clips (29% and 39% of
Kadumane and Kodagu recording clips, respectively). In recordings from Kadumane, the greatest
number of total vocalizations was produced by the Indian scimitar babbler (Supplementary material,
Appendix 3). Thus, we further analyzed whether acoustic indices could predict the total number of
Indian scimitar babbler vocalizations, which were the most common species sounds.

Acoustic indices vs avian vocal activity and diversity

We found that acoustic indices weakly predicted the richness of avian species vocalizations in Kodagu
recordings, Kadumane recordings, and recordings from both sites combined (R2 < 0.51, MSE >0.25,
Table 2). Similarly, acoustic indices weakly predicted the total number of avian vocalizations and the
number of Indian scimitar babbler vocalizations in Kadumane recordings (R2 < 0.47, MSE > 276.35,
Table 2). Conversely, acoustic indices were strongly related to Shannon diversity of avian vocalizations
in Kadumane recordings (R2 = 0.64, MSE = 0.17, Figure 3, Table 2); thus, we use this model in all
further analyses. The top RF model predicting Shannon diversity of vocalizations included the fol-
lowing acoustic indices as predictors: acoustic complexity index (ACI) (Pieretti et al., 2011); spectral
and temporal entropy (Sueur et al., 2008b); biophony and mean sound levels in the avian frequency

Table 2. Mean squared error (MSE) and R2 of global RF models combining acoustic indices to predict

Shannon diversity of avian vocalizations, total avian vocalizations, total vocalizations of the Indian sci-

mitar babbler, and avian species richness in acoustic recordings from sites in Kadumane and Kodagu.

Response variable Recording sites R2 MSE

Shannon diversity Kadumane 0.64 0.17

Total avian sounds Kadumane 0.47 4,265.40

Total sounds of Indian scimitar babbler Kadumane 0.33 276.35

Species richness Kadumane 0.51 0.25

Species richness Kodagu 0.40 1.35

Species richness All sites 0.51 1.12
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bands (Joo et al., 2011; Tucker et al., 2014);
acoustic activity, duration of acoustic events in
the avian and noise bands, entropy of spectral
maxima, and spectral persistence (Towsey et al.,
2014), acoustic evenness index and acoustic
diversity index (Villanueva-Rivera et al., 2011);
spectral kurtosis (Bormpoudakis et al., 2013);
and roughness and the difference between the
10th and 90th exceedance levels (Rychtáriková
and Vermeir, 2013; Hong and Jeon, 2017). The
most important acoustic indices in this top
model were the ACI, roughness, and temporal
entropy (Figure 4).

Predicting avian vocal diversity among
sites

We found that RF models best predicted high
and low Shannon diversity of avian vocalizations
(Figure 5). Shannon diversity between 0.5–1.5
had the highest model residuals indicating that

acoustic indices were less reliable when predicting mid-levels of avian vocalization diversity.

Linear models examining the effect of sounds on residuals from RF models showed that residuals were
higher in recordings with longer duration biological sounds (Figure 6). These sounds ranged from 8 to
238 seconds (almost the entire duration of the 300 sec sound clip) and were produced by insects, birds,
and frogs (n = 12, n = 23, and n = 5 of 58 respectively). Anthropogenic and rain sounds had little effect on

Figure 3. Relationship between the actual and

predicted Shannon diversity of species vocal-

izations within recordings collected from Kadu-

mane tea estate, Western Ghats, India.

Predicted values were calculated using the top random
forest model which included a suite of acoustic indices.

Figure 4. The importance of acoustic indices included in a random forest model predicting Shannon

diversity of species vocalizations in recordings collected from Kadumane tea estate, Western Ghats, India

(see Table 1 for explanation of abbreviations).

The percent increase in mean standard error (MSE) indicates the loss of predictive accuracy when the predictor variable
is permuted. Only indices >0% increase in MSE are shown. The red stippled box indicates the three indices with an
increase in MSE >10%.
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the predictive ability of models, although they
were present in very few of the recording clips
analyzed (n = 6 and n = 2 of 58, respectively).

RF models predicted the highest Shannon
diversity of avian vocalizations between sunrise
and two hours after sunrise (0600–0800 Indian
Standard Time, IST; Figure 7). At some sites,
diversity of avian vocalizations also peaked just
before sunset (1700–1800 IST). The predicted
Shannon diversity of avian vocalizations from
acoustic index models were weakly correlated
with avian species richness observed in record-
ings from each site at Kodagu (Table 3). Avian
species richness was lowest at the recording sites
at Kadumane placed within forest remnants and
1 m from an open tea plantation (Kadumane
South remnant forest and Kadumane North tea
plantation, Table 3). Generally, we found that
avian species richness was higher at sites in coffee
and cardamom plantations versus tea plantations
or remnant forest stands on tea plantations
(Table 3, Figure 8).

Discussion

Acoustic monitoring has long been used to
capture the diversity and abundance of vocaliz-
ing animals. Rapid technological advances in
low-cost digital recorders has increased the
potential for relatively cheap and effective pas-
sive acoustic monitoring over large extents
(Merchant et al., 2015; Sueur and Farina, 2015).
This new scope of acoustic monitoring has
increased the scale of ecological inference, where
large networks of acoustic recorders are poised to
be the future of wildlife surveying (Sutherland
et al., 2016). Given the urgency of addressing
the biodiversity crisis, the rapid, standardized,
and large-scale monitoring offered by acoustic
recordings is imperative. Critical to acoustic
methods is finding a way of quickly extracting
meaningful information from enormous data-
sets. We tested the ability of a suite of acoustic
indices to capture the diversity and richness of
avian species vocalizations in recordings from the
Western Ghats, a biodiversity hotspot.

We found that indices were of limited utility to capture the richness of avian species vocalizations, but
accurately reflected the Shannon diversity of avian vocalizations in recordings (Table 2). Because indices
measure variation in the acoustic environment they depend on both the number of species vocalizing and
the abundance of each vocalization. Thus, acoustic indices are more likely to predict the diversity of
vocalizations, which takes into account the abundance of each type of vocalization. Other studies found a
significant relationship between avian species richness and acoustic indices (Sueur et al., 2008b; Joo et al.,

Figure 5. The size of residuals (the difference

between the observed Shannon diversity of

vocalizations and random forest model predicted

Shannon diversity of avian species vocalizations)

for each level of Shannon diversity in recordings

collected from Kadumane tea estate, Western

Ghats, India.

The black bar indicates the median, boxes indicate 75th
percentile, and whiskers indicate the 98th percentile.

Figure 6. Parameter estimates and 95% confidence

intervals (error bars) for covariates in a linearmodel

used to predict the size of residuals of random

forest models predicting Shannon diversity of

species vocalizations in recordings collected from

Kadumane tea estate, Western Ghats, India.

Covariates included the duration (in sec) of constant
anthropogenic and biological sounds, the number of frog
and insect sounds, and the presence or absence of rain.
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2011; Pieretti et al., 2011). However, these recordings were collected in simpler acoustic environments
with lower diversity of vocalizing animals (e.g., temperate forests) or indices were compared with
simulated avian communities. In an environment withmore complex acoustic characteristics, such as the
Western Ghats, indices are more likely to reflect a combination of the abundance and different types of
vocalizations.

We found that many acoustic indices were included in the top model predicting the diversity of avian
vocalizations in recordings. Different indices have different mathematical properties and reflect different
components of a soundscape (Gasc et al., 2015). Thus, combining groups of indices in a flexible
modelling approach is most effective to predict the variation in the acoustic environment (Towsey et al.,
2014). Indices that most affected the predictive ability of models were those that reflected both the
temporal and spectral distribution of acoustic energy. For example, the ACI had the highest variable
importance (i.e., permutation caused the highest increase in MSE; Figure 4). The ACI is calculated by
summing the absolute difference in sound pressure levels (SPL) between adjacent seconds (i.e., temporal
variation) divided by the total SPL in the recording sample over all frequency bins (i.e., frequency
variation; (Pieretti et al., 2011). Also important was temporal entropy, which measures the evenness of
sound over time (Sueur et al., 2008b). We found that acoustic descriptors, or acoustic indices sum-
marizing sound energy (e.g., mean and median sound levels, Table 1), were less important in the model
predicting diversity of avian vocalizations, likely because they are less effective at capturing acoustic
heterogeneity. Our results suggest that both the variation and evenness in sound over time and frequency
bins contribute to predicting the diversity of avian vocalizations in an acoustic sample.

We found some evidence of difference in predictive ability of models between Kadumane and Kodagu
plantation recordings (Table 2). The richness of singing bird species per min of observed recordings was

Figure 7. The predicted Shannon diversity of species vocalizations within recordings collected from four

sites at Kadumane tea estate, Western Ghats, India.

Predicted values were calculated using the top random forest model which included a suite of acoustic indices. “Forest”
sites were 300 m inside remnant forest patches while “tea” sites were within 1 m from an open tea plantation.
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Table 3. The mean observed richness of bird species vocalizations in acoustic recordings per minute of

recordings observed and diversity of vocalizations predicted from random forest acoustic index models

(± standard error).

Site Crop Bird species richness Predicted diversity

Mojo plantation 3 Cardamom 0.833 ± 0.255 0.761 ± 0.158

Faisal Coffee 0.556 ± 0.032 0.278 ± 0.009

Subramani Coffee 0.528 ± 0.052 0.329 ± 0.041

Rainforest R Cardamom 0.514 ± 0.028 0.602 ± 0.084

Naveen Coffee 0.5 ± 0.025 0.373 ± 0.054

Faisal Cardamom 0.5 ± 0.012 0.497 ± 0.043

Shivappa Cardamom 0.479 ± 0.036 0.206 ± 0.017

Rajeev Cardamom 0.472 ± 0.064 0.282 ± 0.025

Subaiya Coffee 0.444 ± 0.059 0.417 ± 0.022

Cloudbowl Cardamom 0.417 ± 0.05 0.495 ± 0.046

Rajeev Coffee 0.403 ± 0.056 0.311 ± 0.024

School estate Coffee 0.403 ± 0.048 0.625 ± 0.043

Mojo plantation 2 Coffee 0.4 ± 0.074 0.494 ± 0.023

School estate Cardamom 0.375 ± 0.049 0.566 ± 0.028

Uthappa Cardamom 0.36 ± 0.054 0.383 ± 0.031

Bharat Coffee 0.35 ± 0.027 0.383 ± 0.036

Golden mist Coffee 0.347 ± 0.034 0.629 ± 0.04

Kushalappa Coffee 0.306 ± 0.042 0.267 ± 0.026

Mojo plantation 1 Cardamom 0.278 ± 0.043 0.188 ± 0.013

Uthappa 2 Cardamom 0.253 ± 0.008 0.581 ± 0.036

Vivek Coffee 0.191 ± 0.011 0.251 ± 0.013

Emmanuel Cardamom 0.181 ± 0.012 0.346 ± 0.006

Brookview Coffee 0.139 ± 0.008 0.453 ± 0.027

Brookview Cardamom 0.095 ± 0.008 0.563 ± 0.023

Kadumane North Tea 0.089 ± 0.051 0.472 ± 0.007

Kadumane South Forest (remnant on tea plantation) 0.054 ± 0.005 0.578 ± 0.002

Kadumane South Tea 0.043 ± 0.002 0.734 ± 0.001

Kadumane North Forest (remnant on tea plantation) 0.02 ± 0.001 0.62 ± 0.001
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higher in the Kodagu plantation recordings
(Table 3). Moreover, the composition of vocal-
izing bird species was slightly different between
the two locations. Although acoustic indices
should be insensitive to the identity of species
vocalizations, there is some evidence from pre-
vious research that indices may change with the
presence of particular species (Gasc et al., 2015).
Thus, to ensure acoustic indices reflect vocal
diversity among locations, future research should
investigate the effect of different sets of species
and the density of species richness in the acoustic
environment.

Acoustic index models predicted high and low
vocal species diversity with higher accuracy.
Acoustic characteristics are expected to be more
readily distinguishable between recordings with
low and high diversity relative to sites where
acoustic characteristics are only slightly different.
Thus, some error can be expected for vocalizing
communities with intermediate numbers of

species. Moreover, we found that relatively continuous sounds (>8 sec, generally insects) affected the
ability of index models to predict vocal diversity. In this sense, the acoustic environment of the
Western Ghats makes the use of acoustic indices challenging—particularly, the high density of animals
that produce extended sounds covering a broad spectrum of frequencies (e.g., cicadas, (Diwakar and
Balakrishnan, 2007; Price et al., 2016). However, the relationship between model residuals and
continuous biological sounds was weak (confidence intervals near zero—Figure 6). This suggests that
the indices we included in predictive models captured at least some of the variability relating to the
presence of continuous sources. The development of new indices may help identify and remove or
control for the presence of unwanted continuous sources of broadband sound in long-term recordings.
Further research may also consider the presence and effect of anthropogenic sounds, which were rare at
our recording sites.

Although we were unable to quantify the richness of insect species, their stridulation sounds are not
only an important feature of the acoustic environment, but also reflect a significant component of local
biodiversity. Similarly, we did not focus on identifying anuran vocalizations to species. Previous studies
have established that richness of insect and anuran species differs across different land-use types
(Daniels, 2003; Mone et al., 2014). Thus, future research could focus on developing new indices or
examining the predictive ability of a subset of existing acoustic indices for non-avian species diversity.

We found lower avian species richness at recording sites near open tea fields and in remnant forest
stands on tea plantations versus sites in coffee and cardamom plantations (Figure 2). These findings
are similar to earlier studies, where shade-grown crops are known to maintain higher levels of
biodiversity (Sidhu et al., 2010). Because coffee and cardamom are generally grown under the shade of
native rainforest trees (Figure 2), habitats are more complex, and some plantations are known to
resemble neighboring remnant forest structure (Bhagwat et al., 2008). Conversely, tea plantations are
intensively managed, dense monocultures of tea bushes with a sparse canopy of alien tree species,
representing the most extreme habitat alteration relative to native rainforest (Raman, 2006). Tea
plantations are a major form of land-use in the Western Ghats, having increased by 6,200 Ha (5.5%)
between 2000 and 2006 (Mudappa and Raman, 2007). Moreover, recent observation suggests that
coffee and cardamom plantations are shifting towards lower canopy cover. Thus, rapid assessments of
biodiversity in these altered Western Ghat landscapes could be especially important given the
potential for further land-use change.

Figure 8. Median avian species richness observed

per minute of recordings collected from 28 sites in

different crop types in the Western Ghats, India.

“Tea” sites were 1–300 m inside remnant forest patches
on Kadumane tea plantation, while “cardamom” and
“coffee” sites were in the Kodagu region. The black bar
indicates the median, boxes indicate 75th percentile, and
whiskers indicate the 98th percentile.
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We caution that recordings were collected at different times of year and in different years between sites
at Kadumane and Kodagu. Recordings were collected in May at Kadumane, towards the end of peak
breeding season of birds in this part of Western Ghats (Betts, 1952). Recordings were collected
between October and March at sites in Kodagu (Table S1.1), which spans the post-monsoon to pre-
breeding season, when several migrant species are present in southern India. Many avian species are less
vocal outside of the breeding season, likely resulting in less vocal activity during the winter period.
Although we would expect species richness of vocalizations to be inflated in Kadumane recordings, we
observed the opposite, reinforcing our conclusion that avian species richness is lower in tea plantations.
However, we recommend standardizing the season when recordings are collected to examine patterns
between land-use types. Moreover, future research could focus on annual patterns in avian vocal
diversity, examining the changes in patterns when winter migrants arrive and when resident birds
breed. Finally, standardizing recording specifications, such as microphone gain and temporal sampling
schemes are important when planning acoustic monitoring strategies (Pieretti et al., 2015).

Conclusions

We found that combining a suite of acoustic indices using a flexible modeling approach accurately
predicted high and low avian species vocal diversity in recordings from sites in the Western Ghats,
India. We also found that avian species richness was lower in tea versus shade-grown coffee and
cardamom plantations.

The Western Ghats are a biodiversity hotspot, with high levels of diversity, endemism, and a complex
mosaic of different land-use types. This fragmented landscape faces further changes, with the syner-
gistic impact of continued development, habitat loss, and climate change threatening the persistence of
biodiversity (Ponce-Reyes et al., 2013). In this context, acoustic recordings analyzed using acoustic
indices represent a promising method of measuring avian diversity at large spatio-temporal scales.
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